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Abstract In this paper we continue our investigation of the analogical neural network, by
introducing and studying its replica symmetric approximation in the absence of external
fields. Bridging the neural network to a bipartite spin-glass, we introduce and apply a new
interpolation scheme to its free energy, that naturally extends the interpolation via cavity
fields or stochastic perturbations from the usual spin glass case to these models.

While our methods allow the formulation of a fully broken replica symmetry scheme,
in this paper we limit ourselves to the replica symmetric case, in order to give the basic
essence of our interpolation method. The order parameters in this case are given by the
assumed averages of the overlaps for the original spin variables, and for the new Gaussian
variables. As a result, we obtain the free energy of the system as a sum rule, which, at least
at the replica symmetric level, can be solved exactly, through a self-consistent mini-max
variational principle.

The so gained replica symmetric approximation turns out to be exactly correct in the
ergodic region, where it coincides with the annealed expression for the free energy, and
in the low density limit of stored patterns. Moreover, in the spin glass limit it gives the
correct expression for the replica symmetric approximation in this case. We calculate also
the entropy density in the low temperature region, where we find that it becomes negative,
as expected for this kind of approximation. Interestingly, in contrast with the case where the
stored patterns are digital, no phase transition is found in the low temperature limit, as a
function of the density of stored patterns.
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1 Introduction

The last years have witnessed a great progress in the study of disordered models, whose
description is reached in the frame of statistical mechanics for complex system. As a con-
sequence, the need of powerful tools for their analysis raises, which ultimately push further
the global field of research suggesting new possible models where their applicability can be
achieved.

Among these, interestingly, neural networks have never been analyzed from an interpo-
lating, stochastic perturbation, perspective [13]. As a matter of fact, from the early work
by Hopfield [17] and the, nowadays historical, theory of Amit, Gutfreund and Sompolinsky
(AGS) [1–3], to the modern theory for learning [8], about the neural networks (thought of as
spin glasses with a Hebb-like “synaptic matrix” [16]) several contributions appeared (e.g. [7,
18–21]), often following understanding of spin-glasses (e.g. [10–12, 22]), and the analysis
at low level of stored memories has been achieved, in particular.

However in the high level of stored memories, fundamental enquiries are still in a quite
initial stage. Furthermore, general problems, as the existence of a well defined thermody-
namic limit, achieved for the spin glass case in [14, 15], are unsolved.

Previously, we began to study an “analogical version” of the standard Hopfield model,
by taking the freedom of allowing the learned patterns to have continuous values, their
probability distribution being a standard Gaussian N [0,1] [5].

Within this scenario, we proved the existence of an ergodic phase where the explicit
expressions for all the thermodynamic quantities (free energy, entropy, internal energy) have
been found to self-average around their annealed expression in the thermodynamic limit, in
complete agreement with AGS theory. Moreover, the explicit expression of the rescaled
fluctuations of these variables, and of the overlaps, have been given.

In this paper, again by using an analogy between neural networks and bipartite spin
glasses, we move on by introducing a novel interpolating technique (essentially based on
two different stochastic perturbations), which we use to give a complete description of the
analogical Hopfield model phase diagram, in the replica symmetric approximation, and with
any level of stored memories (i.e. patterns).

An important feature of our analysis is the absence of any spontaneous “magnetization”,
even in the broken ergodicity phase, or in the low temperature limit.

The paper is organized as follows: In Sect. 2 we introduce the analogical neural network
with all its statistical mechanics package of definitions and properties. In Sect. 3 we define
its replica symmetric approximation by means of our interpolating scheme, in the frame of a
self-consistent mini-max principle for the free energy, ruled by numerical order parameters.
In Sect. 4 we study the properties of the replica symmetric approximation, in reference to the
ergodic phase, to the spin glass limit, to the low density limit for stored patterns, and to the
low temperature behavior. Finally, Sect. 5 is dedicated to some conclusion and outlook for
future developments, mainly related to the establishment of a fully broken replica symmetry
regime.

2 Analogical Neural Network

We introduce a large network of N two-state neurons σi = ±1, i ∈ (1, . . . ,N), which are
thought of as quiescent (sleeping), when their value is −1, or spiking (emitting a current
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signal to other neurons), when their value is +1. They interact throughout a symmetric
synaptic matrix Jij defined accordingly the Hebb rule for learning [16],

Jij =
K∑

μ=1

ξ
μ

i ξ
μ

j . (1)

Each random variable, ξμ = {ξμ

1 , . . . , ξ
μ

N }, represents a learned pattern, and tries to bring the
overall current in the network (or in some part) stable with respect to itself (when this hap-
pens, we say we have a retrieval state, see e.g. [1]). The analysis of the network assumes that
the system has already stored K patterns (the learning procedure is not investigated here)
and we are interested in the case in which this number increases proportionally (linearly) to
the system size (high storage level), i.e. N → ∞,K → ∞ with K/N → α, where α is a
free parameter of the theory, the density of stored patterns.

In standard literature, these patters are usually taken as i.i.d. random variables, taking val-
ues ±1, each with equal probabilities 1

2 , 1
2 . Throughout this paper we will make a different

choice, by considering pattern with a unit Gaussian distribution:

P (ξ
μ

i ) = 1√
2π

e−(ξ
μ
i

)2/2. (2)

The average over the quenched memories will be denoted by E and for a generic function
of these memories F(ξ) can be written as

E[F(ξ)] =
∫ K∏

μ=1

N∏

i=1

dξ
μ

i e− (ξ
μ
i

)2

2√
2π

F(ξ) =
∫

F(ξ)dμ(ξ), (3)

of course E[ξμ

i ] = 0 and E[(ξμ

i )2] = 1.
The Hamiltonian of the model is defined as follows

HN(σ, ξ) = − 1

N

K∑

μ=1

N∑

i<j

ξ
μ

i ξ
μ

j σiσj . (4)

For the infinite volume limit, we assume that K is an N dependent increasing sequence, with
limN→∞ K/N = α ∈ R

+. In the following, we write often α in place of K/N , by neglecting
terms irrelevant in the infinite volume limit. As it is usually done in statistical mechanics,
we define the partition function, the “pressure” and the quenched free energy per site as

ZN,K(β, ξ) =
∑

{σ }
e−βHN (σ,ξ) =

∑

{σ }
e

β
N

∑K
μ=1

∑N
i<j ξ

μ
i

ξ
μ
j

σiσj , (5)

AN,K(β) = 1

N
E logZN,K(β, ξ), (6)

fN,K(β) = − 1

β
AN,K(β), (7)

where β is the inverse temperature. By splitting the summation
∑N

i<j = 1
2

∑N

ij − 1
2

∑N

ij δij ,
we can write down for the partition function

ZN(β; ξ) =
∑

{σ }
exp

(
β

2N

K∑

μ=1

N∑

ij

ξ
μ

i ξ
μ

j σiσj − β

2N

K∑

μ=1

N∑

i

(ξ
μ

i )2

)

= Z̃(β; ξ) ×
(
e

−β
2N

∑K
μ=1

∑N
i=1(ξ

μ
i

)2
)
, (8)
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where

Z̃(β; ξ) =
∑

{σ }
exp

(
β

2N

K∑

μ=1

N∑

ij

ξ
μ

i ξ
μ

j σiσj

)
=

∑

{σ }
exp

(
1

2
βN

K∑

μ=1

m2
μ(σ, ξ)

)
, (9)

and mμ(σ, ξ) are the partial magnetizations, defined by

mμ(σ, ξ) = 1

N

N∑

i=1

ξ
μ

i σi . (10)

Notice that Z̃ is the only term of the partition function depending on the particular state of
the network. The contribution of the other term is easily calculated in evaluating the pres-
sure, in such a way that we can consider the problem with partition function Z̃N,K(β, ξ), and
add to the corresponding pressure a term given by −αβ/2 [5], in the infinite volume limit.
Let us now perform a Gaussian transform in order to linearize with respect to the magneti-
zations mμ. The expression for the partition function (9) becomes

Z̃N (β; ξ) =
∑

σ

∫ K∏

μ=1

dμ(zμ) exp

(√
β

N

K∑

μ=1

N∑

i=1

ξ
μ

i σizμ

)
, (11)

where dμ(zμ) is the standard unit Gaussian measure for all the zμ.
Taken F as a generic function of the neurons, we define the Boltzmann state ωβ(F ), at a

given level of noise or inverse temperature β , as

ωβ(F ) = ω(F) = (ZN(β; ξ))−1
∑

{σ }
F(σ)e−βHN (σ,ξ), (12)

and often we drop the subscript β for the sake of simplicity. The s-replicated Boltzmann
measure is defined as 	 = ω1 × ω2 × · · · × ωs in which all the single Boltzmann states are
independent and share identical values for the quenched noise ξ . For the sake of clearness,
given a function F of the neurons of the s replicas, and using the symbol a ∈ [1, . . . , s] to
label replicas, such an average can be written as

	(F(σ 1, . . . , σ s)) = 1

Zs
N

∑

{σ 1}

∑

{σ 2}
· · ·

∑

{σ s }
F(σ 1, . . . , σ s) exp

(
−β

s∑

a=1

HN(σ a, ξ)

)
. (13)

We use the symbol 〈.〉 to mean 〈.〉 = E	(.). Notice that the Boltzmann states can be equiv-
alently expressed in terms of Z̃ and the Boltzmannfaktor in (9).

In the thermodynamic limit, N → ∞,K → ∞ with K/N → α, it is assumed

lim
N→∞

AN,K(β) = A(α,β) = −βf (α,β)

(therefore α is a second parameter of the theory in addition to β). We remind that f (α,β) =
u(α,β) − β−1s(α,β) is the free energy density, u(α,β) the internal energy density and
s(α,β) the intensive entropy.

Reflecting the bipartite nature of the Hopfield model expressed by (11), we introduce two
order parameters The first is the overlap between the replicated neurons (first party overlap),
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defined as

qab = 1

N

N∑

i=1

σa
i σ b

i ∈ [−1,+1], (14)

and the second the overlap between the replicated Gaussian variables z (second party over-
lap), defined as

pab = 1

K

K∑

μ=1

zμ
a z

μ

b ∈ (−∞,+∞). (15)

Both the two order parameters above play a considerable role in the theory as they can
express thermodynamical quantities [5].

3 Replica Symmetric Free Energy

In this section we pay attention to the structure of the free energy: we want to obtain the
latter via a sum rule in which we may isolate explicitly the order parameter fluctuations so
to be able to neglect them achieving a replica-symmetric behavior.

Due to the equivalence among neural network and bipartite spin-glasses, we generalize
the way cavity field and the stochastic stability techniques work on spin glasses to these
structures by introducing a new interpolation scheme.

For the sake of clearness, in order to exploit the interpolation method adapted to the
physics of the model, we introduce three free parameters in the interpolating structure (i.e.
a, b, c) that we fix a posteriori, toward the establishment of the sum rule.

In a pure stochastic stability fashion [10], we need to introduce also two classes of i.i.d.
N [0,1] variables, namely N variables ηi and K variables η̃μ, whose average is still encoded
into the E operator and by which we define the following interpolating quenched pressure
ÃN,K(β, t)

ÃN,K(β, t) = 1

N
E log

∑

σ

∫ K∏

μ

dμ(zμ) exp

(√
t

√
β

N

N,K∑

i,μ

ξ
μ

i σizμ

)

· exp

(
a
√

1 − t

N∑

i

ηiσi

)
exp

(
b
√

1 − t

K∑

μ

η̃μzμ

)
exp

(
c
(1 − t)

2

K∑

μ

z2
μ

)
.

(16)

Notice that we have found convenient to introduce not only the cavity fields ηi and η̃μ but
also a term producing a continuous renormalization of the z variables. The existence of
the z integrals requires c < 1, of course. Without loss of generality, as it will clear in the
following, we may also assume c ≥ 0. We remark that t ∈ [0,1] interpolates between the
value t = 0, where the interpolating quenched pressure becomes made of by non-interacting
systems (a series of one-body problems) whose solution is straightforward, and the opposite
limit, t = 1, that recovers the correct quenched free energy.
The plan is then to evaluate the t -streaming of such a quantity and then obtain the correct
expression by using the fundamental theorem of calculus:

1

N
E log Z̃N,K = ÃN,K(β, t = 1) = ÃN,K(β, t = 0) +

∫ 1

0
dt ′

(
dÃN,K(β, t)

dt

)

t=t ′
. (17)
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When evaluating the streaming dÃN,K(β, t)/dt we get the sum of four terms (A,B,C,D).
Each comes as a consequence of the derivation of a corresponding exponential term appear-
ing into the expression (16).

Once introduced the averages 〈·〉t that naturally extend the Boltzmann measure encoded
in the interpolating scheme (and reduce to the proper one whenever setting t = 1), we can
write them down as

A = 1

N

√
β

N

1

2
√

t

N,K∑

i,μ

Eξi,μω(σizμ) = β

2N
E

K∑

μ

ω(z2
μ) − αβ

2
〈q12p12〉t ,

B = −a

2N
√

1 − t

N∑

i

Eηiω(σi) = −a2

2

(
1 − 〈q12〉t

)
,

C = −b

2N
√

1 − t

K∑

μ

Eη̃μω(zμ) = −b2

2N

K∑

μ

Eω(z2
μ) + αb2

2
〈p12〉t ,

D = −c

2N

k∑

μ

ω(z2
μ),

where in the first three equations we used the well known property of the Gaussian expec-
tation E(ξF (ξ)) = E(∂ξF (ξ)) (integration by parts, or Wick theorem). Notice that we have
written α, in place of K/N , by neglecting terms irrelevant in the infinite volume limit.

Summing up all contributions (A,B,C,D) we get

dÃN,K(β, t)

dt
= (β − b2 − c)

1

2N
E

K∑

μ

ω(z2
μ) − αβ

2
〈q12p12〉t

− a2

2
(1 − 〈q12〉t ) + αb2

2
〈p12〉t . (18)

So we see that if we introduce the new parameters q̄ and p̄, with 0 ≤ q̄ ≤ 1,0 ≤ p̄, and
choose

a = √
αβp̄, b = √

βq̄, c = β(1 − q̄),

then we get

dÃN,K(β, t)

dt
= −αβ

2
〈(q12 − q̄)(p12 − p̄)〉t − αβ

2
p̄(1 − q̄), (19)

where we have added and subtracted a term αβq̄p̄/2, in order to center and complete the
product of the two overlaps. Notice that there is an additional bound on q̄ , resulting from
c < 1, in the form q̄ > 1 − β−1, which is effective only if β > 1.

By inserting the expression (19) into (17) we obtain the wanted sum rule, provided the
explicit expression of ÃN,K(β, t = 0) is known. But this is easily obtained, because there is
complete factorization with respect to the σi and the zμ variables. Through a simple direct
calculation we have
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ÃN,K(β, t = 0)

= 1

N
E log

∑

σ

∫ K∏

μ

dμ(zμ)e
√

αβp̄
∑N

i ηiσi e
√

βq̄
∑K

μ η̃μzμe
β
2 (1−q̄)

∑kN
μ z2

μ

= 1

N
E log

∑

σ

e
√

αβp̄
∑N

i ηiσi

+ 1

N
E log

∫ (
K∏

μ

dzμ

2π

)
e− 1

2
∑K

μ z2
μ(1−β(1−q̄))e

√
βq̄

∑K
μ η̃μzμ

= log 2 +
∫

dμ(η) log cosh
(
η
√

αβp̄
)

+ α

2
log

(
1

1 − β(1 − q̄)

)
+ αβ

2

q̄

1 − β(1 − q̄)
, (20)

where η is N (0,1), and we have rescaled each zμ variable according to the new Gaussian
variance σ defined by

σ 2 = (1 − β(1 − q̄))−1. (21)

As a consequence, by collecting all our results, and by taking into account the connection
between Z and Z̃, we can write the final sum rule in the form

1

N
E(logZN,K(β, ξ)) + αβ

2

∫ 1

0
〈(q12 − q̄)(p12 − p̄)〉t dt = Ā(p̄, q̄;α,β), (22)

where the trial function Ā is defined through

Ā(p̄, q̄;α,β) = log 2 +
∫

dμ(η) log cosh(η
√

αβp̄)

+ α

2
log

(
1

1 − β(1 − q̄)

)
+ αβ

2

q̄

1 − β(1 − q̄)
− αβ

2
p̄(1 − q̄) − αβ

2
. (23)

This sum rule holds as it stands for all allowed values of the trial parameters q̄ and p̄. The
sum rule gives a nice expression of the free energy in terms of the trial function Ā, with
a correction expressed in terms of the fluctuations of p12 and q12, with respect to the trial
values p̄ and q̄ .

Our task now is to fix the trial parameters p̄ and q̄ , so that the influence of the fluctuation
term is kept to a minimum. Here the experience coming from the consideration of the ele-
mentary case of the bipartite mean field ferromagnet [9] is precious. In fact, we know that a
minimax principle must be involved, as in any case of bipartite models.

To this purpose, we need to establish the following properties of the dependence of the
trial function from the trial parameters.

First of all Ā(p̄, q̄) is concave in p̄ for any allowed value of q̄ . The proof is simple. In
fact, a direct standard calculation gives

∂p̄Ā(p̄, q̄) = αβ

2

(
q̄ −

∫
dμ(η) tanh2(η

√
αβp̄)

)
. (24)
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The right hand side is clearly decreasing in p̄, and concavity is established. Moreover, the
trial function, for a fixed q̄ , assumes its maximum value for a well defined value of p̄, let us
say p̄(q̄), where the derivative vanishes, and therefore

q̄ =
∫

dμ(η) tanh2
(
η
√

αβp̄(q̄)
)
. (25)

It is very easy to understand the meaning of this expression. In fact, if we calculate the
average 〈q12〉t=0 at t = 0, by taking into account that here the state is factorized, we find

〈q12〉t=0 =
∫

dμ(η) tanh2
(
η
√

αβp̄
)
. (26)

From this expression, one can show easily that p̄(q̄) is increasing and convex in q̄ . Moreover,
p̄(0) = 0, and p̄(q̄)/q̄ is increasing in q̄ . We have also limq̄→0 p̄(q̄)/q̄ = (αβ)−1.

Let us now consider the trial function, Ā(p̄(q̄), q̄), at the value where the maximum in p̄

is reached. A simple calculation shows that

1

2q̄

d

dq̄
Ā(p̄(q̄), q̄) = αβ

4

(
p̄(q̄)

q̄
− β

(1 − β(1 − q̄))2

)
. (27)

We can see that the right hand side is increasing in q̄ . Therefore, Ā(p̄(q̄), q̄), as a function
of q̄2, is convex. The minimum is achieved, in general, at the value of q̄ where the derivative
vanishes. Therefore, we can uniquely define the replica symmetric approximation through
the minimax principle

ARS(α,β) = min
q̄

max
p̄

Ā(p̄, q̄;α,β) = Ā(p̄(α,β), q̄(α,β);α,β). (28)

The values (p̄(α,β), q̄(α,β)), where the minimax principle is realized, are uniquely defined
as the (nontrivial) intersection of the two curves

q̄ =
∫

dμ(η) tanh2
(
η
√

αβp̄
)
, p̄ = βq̄

(1 − β(1 − q̄))2
, (29)

on the (p̄, q̄) plane.
Now, the meaning of the minimax principle is clear. The trial parameters are chosen

in such a way to correctly reproduce the averages 〈q12〉t=0 = q̄, 〈p12〉t=0 = q̄ , at the initial
factorized state at t = 0. The max part provides for q12, as mentioned before, while the
min part provides for p12, as a simple analogous calculation shows. As t increases from the
value t = 0, the overlaps stay locked for a while, producing the vanishing of the correlation
correction in the sum rule. Then, eventually the locking is lost, and a departure from the
replica symmetric approximation is expected, as we will prove in the following at least for
high values of β .

Notice that only the trivial intersection p̄ = 0, q̄ = 0 is possible, in the region where
β(1 + √

α) < 1. In fact, for β < 1, we have at q̄ = 0

d

dq̄2
Ā(p̄(q̄), q̄)|q̄=0 = 1

4

(
1 − αβ2

(1 − β)2

)
. (30)

Therefore, if αβ2 < (1 − β)2, i.e. β(1 + √
α) < 1, this derivative at the origin is positive,

and the minimum is achieved at q̄ = 0, which implies also p̄ = 0. But this is the annealed
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region. Here, for q̄ = 0, p̄ = 0, our replica symmetric approximation, given by (23) and (28),
coincides with the annealed expression for the free energy [5], which is considered to be
correct in the infinite volume limit, in full agreement with the AGS results.

4 Properties of the Replica Symmetric Free Energy

We have already seen that our replica symmetric approximation gives the right answer in
the annealed region.

It is also important to remark that a minimax principle for the free energy emerges also
for the dichotomic model with an external field, in the region where the replica symmet-
ric expression can be shown to hold rigorously in the infinite volume limit, as proved for
example by Michel Talagrand in his book [22].

At first sight, it is surprising that the definition of the replica symmetric Ansatz, as given
above for the analogical neural network, does not include a spontaneous magnetization term,
forcing the spins to align along some given stored pattern, as it happens in the dichotomic
case. As a matter of fact, we could include a term of this kind in the interpolation procedure,
ruled by an additional trial parameter M . It is enough to single out one of the terms in (9),
for example m2

1, and let all other terms undergo the Gaussian transformation, as explained
before. Then, we could insert a new term in the interpolating expression (16) of the form
tm2

1 + (1 − t)Mm1, by following for this particular magnetization the standard procedure
as in the Curie-Weiss model (see for example [4, 13]), which implies maximization with
respect to M . We would end up with an apparently more general sum rule

1

N
E(logZN,K(β, ξ)) + αβ

2

∫ 1

0
〈(q12 − q̄)(p12 − p̄)〉t dt

= β

2

∫ 1

0
〈(m1 − M)2)〉t dt + Ā(p̄, q̄,M;α,β), (31)

where there is also the additional fluctuation of m1 with respect to its trial value M . Now
the trial function Ā is defined through

Ā(p̄, q̄,M;α,β) = log 2 +
∫

dμ(η) log cosh(η
√

αβp̄ + β2M2)

+ α

2
log

(
1

1 − β(1 − q̄)

)
+ αβ

2

q̄

1 − β(1 − q̄)
− αβ

2
p̄(1 − q̄)

− αβ

2
− β

2
M2. (32)

Let us notice that the additional order parameter M appears under the square root in the
integral with respect to η, because in any case the independent Gaussian cavity fields ηi and
the Gaussian fields ξ 1

i in m1 can be lumped together into new Gaussian cavity fields with
the proper variance.

Along the minimax procedure, the treatment of the p̄, q̄ variables is similar to the case
without M . For the M derivative we have

∂M2Ā = β

2

(
β(1 − q̄) − 1

)
< 0, (33)
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since in any case β(1 − q̄) < 1 must be true. Therefore, Ā is decreasing in M2, and the
optimal value in the max part of the variational principle is reached for M = 0. Therefore,
no M parameter is necessary. In a sense, it is the parameter p̄ which replaces completely M .

In fact, as a test, we can consider the limit for α → 0 of the replica symmetric
Ansatz (low charge limit). The interesting case is when β > 1. Then q̄(α,β) > 1 − β−1.
The self-consistent equations (29) imply that q̄(α,β) → 1 − β−1 in this limit. Moreover,
p̄(α,β) → ∞, in such a way that αp̄(α,β) → βM2(β), where M(β) is the unique solution
of the equation β(1 − ∫

dμ(η) tanh2(βM(β)η)) = 1. Moreover, we have

lim
α→0

ĀRS(α,β) = log 2 +
∫

dμ(η) log cosh(βM(β)η) − β

2
M2(β). (34)

Therefore, we see that in the low charge limit we recover exactly the expression for the
magnetization order parameter, and for the free energy, of the neural net constructed with a
finite fixed number K of stored patterns, in the infinite volume limit N → ∞. We refer to
[6], and references quoted there, for an extensive treatment of the low charge limit.

As a further test of consistency in the definition of the replica symmetric Ansatz, we can
consider the spin glass limit of the neural net. Let us recall how it is defined. Start from the
expression (5) of the partition function of the neural net. By keeping fixed the number of
spins N , let us take K → ∞, and also β → 0, in such a way that β

√
K/N → β ′, where

β ′ will act as inverse temperature of the limiting spin glass. By interpreting K/N as α, we
could say in a sense that an α → ∞ limit is involved. Let us write the interaction exponent
in (5) in the equivalent form

β

√
K

N

1√
N

N∑

i<j

(
1√
K

K∑

μ=1

ξ
μ

i ξ
μ

j

)
σiσj . (35)

In the limit, we have β
√

K/N → β ′, by definition. Moreover, as a consequence of the
central limit theorem, for each couple (i, j), we have

lim
K→∞

1√
K

K∑

μ=1

ξ
μ

i ξ
μ

j = Jij ,

in distribution, where the Jij ’s are a family of independent unit Gaussian random vari-
ables. Therefore, the interaction exponent converges to β ′ ∑N

i<j Jij σiσj /
√

N , which is the
Sherrington-Kirkpatrick mean field expression.

On the other hand, if we start from (28), and (29), and perform the limit α → ∞, β → 0,
β
√

α → β ′, we find q̄(α,β) → q̂(β ′), p̄(α,β) → 0, p̄(α,β)/β → q̂(β ′). Here q̂(β ′) is
the nontrivial solution of q̂(β ′) = ∫

tanh2(β ′√q̂(β ′)η)dμ(η), if β ′ > 1, while q̂(β ′) = 0 if
β ′ ≤ 1. As a consequence

lim
α→∞ ARS(α,β) = Â(β ′) = log 2+

∫
log cosh

(
β ′√q̂(β ′)η

)
dμ(η)+ β ′2

4
(1− q̂(β ′))2. (36)

Therefore, we see that in the limit we recover the correct expression for the well known
replica symmetric Ansatz for the spin glass, which is known to be rigorously an upper bound
for the pressure [11].

Therefore, our replica symmetric Ansatz for the neural net is known to be the exact so-
lution in the annealed region and in the low charge limit, while it turns out to be an upper
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bound for the pressure in the spin glass limit. An attractive conjecture is that it is always
an upper bound in the whole parameter region. But in order to establish this rigorously it
would be necessary to have a better control on the fluctuation correcting terms in the sum
rule. Further research toward this objective is necessary.

We end this section, by reporting about the properties of the replica symmetric Ansatz in
the low temperature limit, as β → ∞. Our main results concern the ground state energy and
its associated entropy, defined by

êRS(α) = lim
β→∞ ∂βĀRS(α,β) = lim

β→∞ ĀRS(α,β)/β, (37)

ŝRS(α) = lim
β→∞

(
ĀRS(α,β) − β∂βĀRS(α,β)

)
. (38)

First of all, from the self-consistency equations (29), through a long and straightforward
calculation, we can easily derive the following essential information on the low temperature
limit for the order parameters, q̄(α,β) → 1, β(1 − q̄(α,β)) → √

2/απ(1 + √
2/απ)−1,

p̄(α,β) → ∞, p̄(α,β)/β → (1 + √
2/απ)2. Then, by exploiting the definition (28), we

derive the following expressions for the ground state energy and the entropy

êRS(α) = 1

π
+

√
2

π

√
α, (39)

ŝRS(α) = 1

2
α

(
log

(
1 +

√
2

απ

)
−

√
2

απ

)
. (40)

Notice that the entropy ŝRS(α) suffers the typical disease of a replica symmetric Ansatz of
being negative. Therefore, the true solution of the model must involve replica symmetry
breaking. However, in the low charge limit we have the correct behavior limα→0 ŝRS(α) = 0,
while in the spin glass limit we have limα→∞ ŝRS(α) = −1/(2π), which is the ground state
entropy of the replica symmetric approximation for the spin glass. Analogously, for the
ground state energy we have the correct low charge limit limα→0 êRS(α) = 1/π , and the
correct spin glass replica symmetric limit limα→∞ êRS(α)/

√
α = √

2/π .
It is important to remark that the expression of the ground state energy and entropy is

completely smooth in the whole parameter range 0 ≤ α < ∞. No phase transition associated
with a kind of saturation in the retrieval procedure has been found.

This ends our discussion about the properties of the replica symmetric Ansatz in the
analogical neural network.

5 Conclusion and Outlook for Future Development

We have considered a neural network model with quenched memories encoded by words
with continuous Gaussian distributed values. By generalizing methods exploited in the spin
glass case, we have introduced an interpolation procedure in order to reach the replica sym-
metric approximation for the model. This leads to an Ansatz for the free energy which in-
volves two order parameters, related to the overlaps. The order parameters are uniquely
defined by self-consistent equations, in terms of the two free parameters of the model, the
temperature and the charge of the storage.

We have found that this replica symmetric approximation is indeed exact in the annealed
region, and in the low charge limit, while it gives the known replica symmetric approxima-
tion in the spin glass limit. We have also studied the low temperature limit, by finding that
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the entropy is negative, as expected. In the low temperature region, no evidence of a phase
transition, associated with the breaking of the retrieval power, has been found, in contrast
with the well known results of the replica symmetric approximation in the dichotomic case.

Our method can be immediately expanded toward a full replica breaking scheme, by fol-
lowing the same procedure exploited in the spin glass case. At the replica symmetric level the
two order parameters are related to the presumed values of the two overlaps, the first among
the spin variables, the second among the auxiliary variables entering the transformation into
a bipartite spin glass. When full replica symmetry is assured, then the order parameter will
acquire a functional character, associated to the joint distribution of the overlaps. In a forth-
coming paper, we will show how our scheme extends to the fully broken replica symmetry
case, where now the order parameters include the fluctuations of the overlaps.
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